Corticotropin-releasing factor (CRF) and CRF-binding protein expression in and release from the head kidney of common carp: evolutionary conservation of the adrenal CRF system.
نویسندگان
چکیده
Corticotropin-releasing factor (CRF) plays a central role in the regulation of the stress axis. In mammals, CRF as well as its receptors and its CRF-binding protein (CRF-BP) are expressed in a variety of organs and tissues outside the central nervous system. One of these extrahypothalamic sites is the adrenal gland, where the paracrine actions of adrenal CRF influence cortical steroidogenesis and adrenal blood flow. Although the central role of CRF signaling in the initiation and regulation of the stress response has now been established throughout vertebrates, information about the possible peripheral presence of CRF in earlier vertebrate lineages is scant. We established the expression of CRF, CRF-BP, and the CRF receptor 1 in a panel of peripheral organs of common carp (Cyprinus carpio). Out of all the peripheral organs tested, CRF and CRF-BP are most abundantly expressed in the carp head kidney, the fish equivalent of the mammalian adrenal gland. This expression localizes to chromaffin cells. Furthermore, detectable quantities of CRF are released from the intact head kidney following in vitro stimulation with 8-bromo-cAMP in a superfusion setup. The presence of CRF and CRF-BP within the chromaffin compartment of the head kidney suggests that a pathway homologous to the mammalian intra-adrenal CRF system is present in the head kidney of fish. It follows that such a system to locally fine-tune the outcome of the centrally initiated stress response has been an integral part of the vertebrate endocrine system since the common ancestor of teleostean fishes and mammals.
منابع مشابه
Regulation of vertebrate corticotropin-releasing factor genes.
Developmental, physiological, and behavioral adjustments in response to environmental change are crucial for animal survival. In vertebrates, the neuroendocrine stress system, comprised of the hypothalamus, pituitary, and adrenal/interrenal glands (HPA/HPI axis) plays a central role in adaptive stress responses. Corticotropin-releasing factor (CRF) is the primary hypothalamic neurohormone regul...
متن کاملSequences, expression patterns and regulation of the corticotropin-releasing factor system in a teleost.
Corticotropin-releasing factor (CRF) is well known for its role in regulating the stress response in vertebrate species by controlling release of glucocorticoids. CRF also influences other physiological processes via two distinct CRF receptors (CRF-Rs) and is co-regulated by a CRF binding protein (CRFBP). Although CRF was first discovered in mammals, it is important for the regulation of the st...
متن کاملCorticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior
Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is involved in stress-related physiology and behavior, including control of the hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides, including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding pro...
متن کاملCRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface.
Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that...
متن کاملNeuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis.
Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) have opposing effects on stress and anxiety. Both can modify synaptic activity through their binding to NPY receptors (YRs) and CRF receptors (CRFRs) respectively. The bed nucleus of the stria terminalis (BNST) is a brain region with enriched expression of both NPY and YRs and CRF and CRFRs. A component of the "extended amygdala", th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 193 3 شماره
صفحات -
تاریخ انتشار 2007